Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 18(10): 1930-1942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34978147

RESUMO

We previously demonstrated that in Alzheimer's disease (AD) patients, European apolipoprotein E (APOE) ε4 carriers express significantly more APOE ε4 in their brains than African AD carriers. We examined single nucleotide polymorphisms near APOE with significant frequency differences between African and European/Japanese APOE ε4 haplotypes that could contribute to this difference in expression through regulation. Two enhancer massively parallel reporter assay (MPRA) approaches were performed, supplemented with single fragment reporter assays. We used Capture C analyses to support interactions with the APOE promoter. Introns within TOMM40 showed increased enhancer activity in the European/Japanese versus African haplotypes in astrocytes and microglia. This region overlaps with APOE promoter interactions as assessed by Capture C analysis. Single variant analyses pinpoints rs2075650/rs157581, and rs59007384 as functionally different on these haplotypes. Identification of the mechanisms for differential regulatory function for APOE expression between African and European/Japanese haplotypes could lead to therapeutic targets for APOE ε4 carriers.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , População Negra/genética , Genótipo , Haplótipos , Polimorfismo de Nucleotídeo Único/genética
2.
JAMA Neurol ; 74(9): 1113-1122, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738127

RESUMO

Importance: Mutations in APP, PSEN1, and PSEN2 lead to early-onset Alzheimer disease (EOAD) but account for only approximately 11% of EOAD overall, leaving most of the genetic risk for the most severe form of Alzheimer disease unexplained. This extreme phenotype likely harbors highly penetrant risk variants, making it primed for discovery of novel risk genes and pathways for AD. Objective: To search for rare variants contributing to the risk for EOAD. Design, Setting, and Participants: In this case-control study, whole-exome sequencing (WES) was performed in 51 non-Hispanic white (NHW) patients with EOAD (age at onset <65 years) and 19 Caribbean Hispanic families previously screened as negative for established APP, PSEN1, and PSEN2 causal variants. Participants were recruited from John P. Hussman Institute for Human Genomics, Case Western Reserve University, and Columbia University. Rare, deleterious, nonsynonymous, or loss-of-function variants were filtered to identify variants in known and suspected AD genes, variants in multiple unrelated NHW patients, variants present in 19 Hispanic EOAD WES families, and genes with variants in multiple unrelated NHW patients. These variants/genes were tested for association in an independent cohort of 1524 patients with EOAD, 7046 patients with late-onset AD (LOAD), and 7001 cognitively intact controls (age at examination, >65 years) from the Alzheimer's Disease Genetics Consortium. The study was conducted from January 21, 2013, to October 13, 2016. Main Outcomes and Measures: Alzheimer disease diagnosed according to standard National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer Disease and Related Disorders Association criteria. Association between Alzheimer disease and genetic variants and genes was measured using logistic regression and sequence kernel association test-optimal gene tests, respectively. Results: Of the 1524 NHW patients with EOAD, 765 (50.2%) were women and mean (SD) age was 60.0 (4.9) years; of the 7046 NHW patients with LOAD, 4171 (59.2%) were women and mean (SD) age was 77.4 (8.6) years; and of the 7001 NHW controls, 4215 (60.2%) were women and mean (SD) age was 77.4 (8.6) years. The gene PSD2, for which multiple unrelated NHW cases had rare missense variants, was significantly associated with EOAD (P = 2.05 × 10-6; Bonferroni-corrected P value [BP] = 1.3 × 10-3) and LOAD (P = 6.22 × 10-6; BP = 4.1 × 10-3). A missense variant in TCIRG1, present in a NHW patient and segregating in 3 cases of a Hispanic family, was more frequent in EOAD cases (odds ratio [OR], 2.13; 95% CI, 0.99-4.55; P = .06; BP = 0.413), and significantly associated with LOAD (OR, 2.23; 95% CI, 1.37-3.62; P = 7.2 × 10-4; BP = 5.0 × 10-3). A missense variant in the LOAD risk gene RIN3 showed suggestive evidence of association with EOAD after Bonferroni correction (OR, 4.56; 95% CI, 1.26-16.48; P = .02, BP = 0.091). In addition, a missense variant in RUFY1 identified in 2 NHW EOAD cases showed suggestive evidence of an association with EOAD as well (OR, 18.63; 95% CI, 1.62-213.45; P = .003; BP = 0.129). Conclusions and Relevance: The genes PSD2, TCIRG1, RIN3, and RUFY1 all may be involved in endolysosomal transport-a process known to be important to development of AD. Furthermore, this study identified shared risk genes between EOAD and LOAD similar to previously reported genes, such as SORL1, PSEN2, and TREM2.


Assuntos
Doença de Alzheimer/genética , Transporte Biológico/genética , Proteínas de Transporte/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas Adaptadoras de Transdução de Sinal , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Região do Caribe , Estudos de Casos e Controles , Exoma , Feminino , Hispânico ou Latino/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , População Branca/genética
3.
Neurol Genet ; 2(3): e79, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27231719

RESUMO

OBJECTIVE: To identify a causative variant(s) that may contribute to Alzheimer disease (AD) in African Americans (AA) in the ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene, a known risk factor for late-onset AD. METHODS: Custom capture sequencing was performed on ∼150 kb encompassing ABCA7 in 40 AA cases and 37 AA controls carrying the AA risk allele (rs115550680). Association testing was performed for an ABCA7 deletion identified in large AA data sets (discovery n = 1,068; replication n = 1,749) and whole exome sequencing of Caribbean Hispanic (CH) AD families. RESULTS: A 44-base pair deletion (rs142076058) was identified in all 77 risk genotype carriers, which shows that the deletion is in high linkage disequilibrium with the risk allele. The deletion was assessed in a large data set (531 cases and 527 controls) and, after adjustments for age, sex, and APOE status, was significantly associated with disease (p = 0.0002, odds ratio [OR] = 2.13 [95% confidence interval (CI): 1.42-3.20]). An independent data set replicated the association (447 cases and 880 controls, p = 0.0117, OR = 1.65 [95% CI: 1.12-2.44]), and joint analysis increased the significance (p = 1.414 × 10(-5), OR = 1.81 [95% CI: 1.38-2.37]). The deletion is common in AA cases (15.2%) and AA controls (9.74%), but in only 0.12% of our non-Hispanic white cohort. Whole exome sequencing of multiplex, CH families identified the deletion cosegregating with disease in a large sibship. The deleted allele produces a stable, detectable RNA strand and is predicted to result in a frameshift mutation (p.Arg578Alafs) that could interfere with protein function. CONCLUSIONS: This common ABCA7 deletion could represent an ethnic-specific pathogenic alteration in AD.

4.
Neurol Genet ; 2(1): e41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27066578

RESUMO

OBJECTIVE: The genetic risk architecture of Alzheimer disease (AD) is complex with single pathogenic mutations leading to early-onset AD, while both rare and common genetic susceptibility variants contribute to the more widespread late-onset AD (LOAD); we sought to discover novel genes contributing to LOAD risk. METHODS: Whole-exome sequencing and genome-wide genotyping were performed on 11 affected individuals in an extended family with an apparent autosomal dominant pattern of LOAD. Variants of interest were then evaluated in a large cohort of LOAD cases and aged controls. RESULTS: We detected a single rare, nonsynonymous variant shared in all 11 LOAD individuals, a missense change in the tetratricopeptide repeat domain 3 (TTC3) gene. The missense variant, rs377155188 (p.S1038C), is predicted to be damaging. Affecteds-only multipoint linkage analysis demonstrated that this region of TTC3 has a LOD score of 2.66 in this family. CONCLUSION: The TTC3 p.S1038C substitution may represent a segregating, rare LOAD risk variant. Previous studies have shown that TTC3 expression is consistently reduced in LOAD patients and negatively correlated with AD neuropathology and that TTC3 is a regulator of Akt signaling, a key pathway disrupted in LOAD. This study demonstrates how utilizing whole-exome sequencing in a large, multigenerational family with a high incidence of LOAD could reveal a novel candidate gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA